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Abstract. In magnetic nanoparticles the uniform precession (q = 0 spin wave) mode gives the predominant
contribution to the magnetic excitations. We have calculated the energy of the uniform mode in antiferro-
magnetic nanoparticles with uncompensated magnetic moments, using the coherent potential approxima-
tion. In the presence of uncompensated moments, an antiferromagnetic nanoparticle must be considered
as a kind of a ferrimagnet. Two magnetic anisotropy terms are considered, a planar term confining the
spins to the basal plane, and an axial term determining an easy axis in this plane. Excitation energies are
calculated for various combinations of these two anisotropy terms, ranging from the simple uniaxial case
to the planar case with a strong out-of-plane anisotropy. In the simple uniaxial case, the uncompensated
moment has a large influence on the excitation energy, but in the planar case it is much less important.
The calculations explain recent neutron scattering measurements on nanoparticles of antiferromagnetic
α-Fe2O3 and NiO.

PACS. 76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance –
75.75.+a Magnetic properties of nanostructures – 75.50.Ee Antiferromagnetics – 75.30.Gw Magnetic
anisotropy

1 Introduction

The magnetic properties of nanoparticles have been the
subject of numerous studies, partly because of the many
technological applications of magnetic nanoparticles [1,2].
Several experimental and theoretical studies of spin waves
in low-dimensional systems have been published [3–7]. In
magnetic nanoparticles, it is characteristic that the mag-
netisation direction is not fixed as in bulk materials, but
fluctuates due to thermal excitation of the uniform pre-
cession mode. Such uniform precession around an easy di-
rection of magnetisation in combination with transitions
between precession states with different precession angles
have been termed collective magnetic excitations [8,9].
As the temperature is increased such that the magnetic
anisotropy energy is comparable to the thermal energy,
the fluctuations become dominated by superparamagnetic
relaxation, i.e. thermally induced magnetisation reversals.

The uniform precession states are predominant in
nanoparticles compared to other spin wave excitations [10]
and these precession states can be described as spin waves
with the wave vector q = 0. Uniform excitations in
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bulk antiferromagnetic materials are conventionally stud-
ied by antiferromagnetic resonance (AFMR) experiments,
see, for example [11]. However, only few magnetic reso-
nance studies have been performed on antiferromagnetic
nanoparticles [12,13].

Inelastic neutron scattering has been shown to be a
useful tool for measuring the excitation energy of the uni-
form precession states [14]. The quantised nature of the
q = 0 spin waves and also the polarisation of these may
be studied by this method [15].

Many previous calculations concerning antiferromag-
netic spin waves assume a uniaxial anisotropy described
by a single anisotropy term [16]. However, often the
anisotropy is better described by more than one term. In
the present paper the q = 0 spin wave energies in the
presence of both a negative planar anisotropy energy κ1,
and a positive axial in-plane anisotropy energy κ2, are cal-
culated. This description is applicable e.g. to hematite (α-
Fe2O3) and NiO. In both bulk materials the value of |κ2|
is very small compared to |κ1|. In nanoparticles of these
materials, the axial anisotropy energy has been found
to be orders of magnitude larger than in bulk although
still significantly smaller than the planar anisotropy en-
ergy [17,18]. This can be explained by the influence of
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surface anisotropy [19], which results from the low sym-
metry around the surface atoms.

In general, a nanoparticle of an antiferromagnetic ma-
terial is not a perfect antiferromagnet, but has an uncom-
pensated magnetic moment due to different numbers of
spins in the two sublattices. This was proposed theoret-
ically by Néel [20] and has been observed in nanoparti-
cles of different antiferromagnetic materials such as fer-
ritin [21,22] NiO [23–25], and Cr2O3 [26].

In this paper, we use the coherent potential approxima-
tion to derive expressions for the energy of the uniform ex-
citations in nanoparticles with uncompensated magnetic
moments, and with axial and planar magnetic anisotropy
terms, similar to those of α-Fe2O3 and NiO. We find that
the effect of an uncompensated moment on the excita-
tion energy depends strongly on the ratio between the
two contributions to the anisotropy. The calculations as-
sume localised spins, and neglect any non-collinear spin
structures such as spin-canting. In real nanoparticles spin-
canting may be present both at the surface and within the
particles [27]. Our model may be generalized to include
this.

2 Uniform mode spin waves in a finite lattice
with planar and axial anisotropy

We consider a nanoparticle of a two-sublattice antiferro-
magnet with sublattice labels A and B. The number of
magnetic ions on sublattice A is NA and on sublattice B
it is NB. The index of sublattice A is j, and the index of
sublattice B is l. The ratio between the number of spins
on the sublattices is ξ = NB

NA
. The uncompensated spin is

defined as |s(NA − NB)| = |sNA(1 − ξ)|.
The ground state of the system is assumed to be the

Néel state with the spins on the sublattice A aligned along
the positive z direction and those on sublattice B aligned
along the negative z direction.

The Hamiltonian of the system with spins sj and sl

can be written as

H =
∑

jl
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⎝
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where Jjl are the inter-sublattice exchange constants, z is
the easy axis of the spins within the easy plane and x is
perpendicular to the easy plane. Choosing the anisotropy
constants κ1j and κ1l negative and κ2j and κ2l positive we
maintain a ground state with the spins pointing along z.
For a nanoparticle the anisotropy depends on the site j, l
because atoms near the surface may have an anisotropy
that differs from that of atoms in the interior of the par-
ticles. For simplicity, we here assume that the anisotropy
energy has the same form for all atoms. Since we will only
consider the q = 0 spin wave mode, we may disregard the

intra-sublattice interaction, i.e. the Jjj′ and Jl′l-terms in
the Hamiltonian.

The initial calculations follow the procedure outlined
by Marshall and Lovesey [28], but differ by not assum-
ing translational symmetry. For completeness, we here
sketch the full calculation leading to the final spin wave
expression. The spin raising and lowering operators s± =
sx ± isy satisfy the commutator relations

[s+
n , s−m] = 2sz

nδn,m and [sz
n, s±m] = ±s±n δn,m (2)

where m and n refer to spins on either of the sublattices.
Rotating the B sublattice by π about the x axis gives new
operators, t, where

txl = sx
l tyl = −sy

l tzl = −sz
l

t+l = s−l t−l = s+
l (3)

At low temperature the spins will predominantly be along
z in one sublattice and along −z in the other sublattice,
such that sz

j ≈ s and tzl ≈ −s are valid approximations.
Including only linear terms we reach four equations of

motion for individual spin site operators:

i�
d
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= ±s
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l

Jjl

(
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(4)
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)
. (5)

To obtain the correct quantum mechanical form for the
anisotropy terms, we have used the well ordered Holstein-
Primakoff transformation [29]. This gives the factor s′ =
s − 1

2 in the anisotropy terms, instead of the classical s.
The creation operator of a q = 0 spin wave is a lin-

ear combination of the four operators S± =
∑

j s±j and
T± =

∑
l t

±
l . Using (4), (5) and a coherent potential ap-

proximation for the anisotropy terms, we reach the equa-
tions of motion for these:

i�
d
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S± = [S±,H]

= ±s
∑
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where the average anisotropy constants are
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1
2
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j κnj
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)
, n = 1, 2. (8)
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To show that there are no terms missing from (6) and (7)
although jj′ and l′l-terms were left out of the Hamilto-
nian (1), consider the term in the double-sums, Jjl(t∓l +
s±j ) and Jjl(s∓j +t±l ). These terms are antisymmetric with
respect to the indices, since s±l = ∓t∓l and t±j = ∓s∓j . If
a term of index jj′ appears in the same sum as one of
index j′j, these will cancel out. Hence, we are left only
with bonds connecting sites on opposite sublattices.

This enables us to easily count the total number of
bonds on each sublattice, and we will now use this to ap-
proximate the double sums,

∑

jl

Jjl(t∓l + s±j ) and
∑

jl

Jjl(s∓j + t±l ). (9)

The method for infinite systems is to use periodic bound-
ary conditions. However, this is invalid for nanoparticles.
In our case, the number of bonds to a site varies, depend-
ing on the position in the nanoparticle.

Consider a specific nanoparticle. For simplicity, we as-
sume that the interior of the nanoparticle is defect-free
with Zint bonds to each of the Nint internal sites. Sup-
pose that on average, there are Zsurf bonds to each of the
Nsurf surface sites. The total number of bonds connecting
sublattices A and B of a particular nanoparticle, is

K = Zsurf,ANsurf,A + Zint,ANint,A (10)
= Zsurf,BNsurf,B + Zint,BNint,B. (11)

However, the average number of bonds seen from either
sublattice, differs. Notice that K depends on NA, NB,
and the shape of the particle.

We can now define the weighted average J (0)avI =
JZav

I for each sublattice, by

J (0)avA = J
Zsurf,ANsurf,A + Zint,ANint,A

NA
=

JK

NA
(12)

J (0)avB = J
Zsurf,BNsurf,B + Zint,BNint,B

NB
=

JK

NB
(13)

J (0)avA = ξJ (0)avB . (14)

This is a coherent potential approximation for the ex-
change interaction. The microscopic approach allows us to
treat the anisotropy and sublattice interaction in a quan-
tum mechanically correct way.

We can now use the coherent potential and (12)–(14),
to approximate (9):

∑

jl

Jjl(t∓l + s±j ) = J (0)avB

∑

l

t∓l + J (0)avA

∑

j

s±j

= J (0)avB T∓ + J (0)avA S±

= J (0)avB (T∓ + ξS±) (15)
∑

jl

Jjl(s∓j + t±l ) = J (0)avB (ξS∓ + T±). (16)

This approximation is only valid in the case where q = 0,
because J (q) contains intra-sublattice terms for q �= 0.

Using (15) and (16), the equations of motion (6)
and (7) are readily solved. In matrix form, we have
⎡

⎢⎢⎢⎢⎣

ξJ (0)avs + a b 0 J (0)avs

−b −ξJ (0)avs − a −J (0)avs 0

0 ξJ (0)avs J (0)avs + a b

−ξJ (0)avs 0 −b −J (0)avs − a

⎤

⎥⎥⎥⎥⎦

(17)
where a = (2κ2 − κ1)s′, b = κ1s

′ and J (0)av = J (0)avB .
The eigenvalues of this matrix are the energies of the uni-
form modes.

2.1 Energies of the uniform mode

2.1.1 Perfect antiferromagnetic nanoparticle

In a perfect antiferromagnetic nanoparticle the number of
spins is the same on both sublattices such that ξ = 1.
Solving equation (17) gives the four solutions

�ωα = ±2
√

κ2s′ [(κ2 − κ1)s′ + J (0)avs] (18)

�ωβ = ±2
√

(κ2 − κ1)s′ [κ2s′ + J (0)avs] (19)

The anisotropy and exchange fields are defined as

BAi =
2|κi|s′
gµB

(i = 1, 2) (20)

and

BE =
|J (0)av|s

gµB
=

c

gµB
, (21)

where g is the g-factor and µB is the Bohr magneton.
Usually BE � BAi and BA1 � BA2. Thus ignoring

the negative solutions the spin wave energies may be ap-
proximated by

�ωα ≈ gµB

√
2BA2BE (22)

�ωβ ≈ gµB

√
2(BA2 + BA1)BE

≈ gµB

√
2BA1BE . (23)

The expressions are recognised as the conventional expres-
sions for antiferromagnetic resonance [11].

2.1.2 Lattice with uncompensated moments

As proposed by Néel [20] the small size of an antiferro-
magnetic nanoparticle generally will result in an excess
number of spins on one sublattice compared to the other,
i.e., ξ �= 1. In this case the solutions to equation (17) be-
come more complex. Using the symbols defined above and
defining

d =
√

4a2(ξ − 1)2 + c2(ξ − 1)4 + 16b2ξ + 4ac(ξ − 1)2(ξ + 1)
(24)
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the spin wave energies are given by

�ωα =

√
a2 − b2 + ac(ξ + 1) +

1
2
c2(ξ − 1)2 − 1

2
cd (25)

�ωβ =
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1
2
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1
2
cd (26)

In the simple uniaxial case where κ1 = 0 (b = 0) the equa-
tions simplify to

�ωα,β =
1
2
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√
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(27)
or stated in the anisotropy and exchange field terminology
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(28)

This result is identical to classical calculations for a fer-
rimagnet assuming uniaxial anisotropy [30,31]. However,
the calculation has now been performed from a micro-
scopic viewpoint, and can thus be generalized to e.g. in-
clude canted spins. The influence of the combined planar
and axial anisotropy was not calculated earlier.

3 Relation to experimental results

In this section the strong ξ-dependency of the two reso-
nance energies �ωα and �ωβ is described and related to
experimental data.

Aside from the explicit ξ-dependency in (28), the ex-
change field BE also depends on ξ through the exchange
interaction J (0)avB . By definition (13), J (0)avB depends on
K and NB, which are both related to ξ through the shape
and size of the particle.

Figure 1 shows the resonance energies in the situation
where the ratio between the number of spins in the two
sublattices is close to unity. In this region we can assume
that BE is independent of ξ. The exchange field is often
very large and in the calculations set to a typical value
of BE = 1000 T. The planar anisotropy field is set to
BA2 = 0.01 T, which is a realistic order of magnitude for
nanoparticles [14,17,18,32]. Three different values of the
axial anisotropy are considered, the uniaxial case where
BA1 = 0 T, the case where the anisotropy contributions
are equal in size BA1 = 0.01 T and the strongly planar
anisotropy case where BA1 = 1 T. In the strongly pla-
nar case (BA1 � BA2) both precession mode energies �ω
depend only weakly on the uncompensated moment. As
the value of BA1 is reduced, the dependence of �ωα on
ξ becomes stronger. When the two anisotropy terms be-
come equal BA1 = BA2 = 0.01 T even an uncompensated
moment as small as 1% results in a reduction of the en-
ergy by a factor of two. In the uniaxial case BA1 = 0 this
reduction is almost a factor of three.

Fig. 1. Energies of the q = 0 spin wave modes for small values
of the uncompensated moment, i.e. ξ � 1. The upper mode is
�ωβ while the lower mode is �ωα. The energies were calculated
with BA2 = 0.01 T and BE = 1000 T. The energies are plotted
for BA1 = 0, BA1 = BA2 and BA1 = 100 BA2.

3.1 Experimental studies of antiferromagnetic
nanoparticles

The magnitude of the uncompensated magnetic moment
of antiferromagnetic nanoparticles has in some cases been
found to be roughly proportional to N1/3, where N is the
number of spins in a particle [24,25], corresponding to a
situation where the uncompensated moment is due to a
more or less random occupation of surface sites [20,24].
Thus, |ξ − 1| increases rapidly with decreasing particle
size.

Inelastic neutron scattering studies of 16 nm α-Fe2O3

particles yielded the excitation energy �ωα = 0.26 meV at
low temperatures [14]. Previous magnetisation measure-
ments of this sample revealed a value of ξ ≥ 0.999 [33].
For these particles, BA1 ≈ 10 BA2 [15], and thus the en-
ergy shift due to the uncompensated moment is according
to (25) less than 1%, i.e. negligible.

Also, as reported in reference [18], an inelastic neu-
tron scattering study of plate-shaped NiO nanoparticles
suggests anisotropy energies that resemble the planar case
with BA1 � BA2. In these particles, a value of ξ = 0.994
has been estimated from high-field Mössbauer spectro-
scopy [25]. It can be seen in Figure 1, that in this case
the influence of the uncompensated moment on the exci-
tation energy is again small.

Mössbauer spectroscopy has a time scale of the order of
a few nanoseconds, which is longer than the characteristic
times of the uniform excitations (∼10 ps). Therefore, this
technique does not allow measurement of the individual
precession states, but only an average over the fluctua-
tions. The uniform excitations give rise to a reduction of
the magnetic hyperfine splitting that is inversely propor-
tional to the product of the magnetic anisotropy constant
and the volume [8,9], but it does not depend on the spin
wave excitation energy [10]. Mössbauer spectroscopy stud-
ies have shown that the magnetic anisotropy of α-Fe2O3

nanoparticles increases with decreasing particle size [34].



C.R.H. Bahl et al.: Uniform spin wave modes in antiferromagnetic nanoparticles 57

Similar results have been found in studies of nanoparticles
of α-Fe [35] and γ-Fe2O3 [36]. This can be explained by
the increasing influence of surface anisotropy with decreas-
ing particle size. According to equation (22), this should
lead to an increase of the spin wave energy. However, such
an increase was not observed in a recent inelastic neutron
study of 8 nm α-Fe2O3 particles. Indeed, an excitation
energy comparable to that found in the 16 nm particles
discussed above was observed [17]. The absence of an in-
crease in the excitation energy may, at least qualitatively,
be explained by the presence of an uncompensated mo-
ment. An N1/3 dependence of the uncompensated mo-
ment would suggest that ξ ≈ 0.99. Also, BA1 and BA2

are expected to be of the same order of magnitude in the
8 nm α-Fe2O3 particles [17], resulting in an expected 50%
reduction of the excitation energy according to Figure 1.
Thus the similarity of the data for 8 nm and 16 nm parti-
cles can be explained by the opposite effects of increasing
anisotropy and increasing uncompensated moment on the
excitation energy.

4 Conclusion

The spin wave energy of q = 0 spin waves (uniform pre-
cession) in antiferromagnetic nanoparticles has been cal-
culated from a microscopic Hamiltonian using a coherent
potential approximation. Systems of recent experimental
interest, with uncompensated moments, planar and ax-
ial anisotropy, are considered. In the coherent potential
approximation, nanoparticles with uncompensated spins
can be considered ferrimagnets, with respect to the q = 0
mode.

Different configurations of such anisotropy ranging
from uniaxial to planar anisotropy are presented. It is
found that the resonance energy depends strongly on the
amount of uncompensated moment in the case of uniaxial
anisotropy, with a weaker dependence in the case of strong
planar anisotropy.

The work was supported by The Danish Research Council for
Technology and Production Sciences.

References

1. J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys.
98, 283 (1997)

2. Fifth International Conference on Fine Particle
Magnetism, edited by Q. Pankhurst (Journal of Physics:
Conference Series 17, 2005)

3. P.V. Hendriksen, S. Linderoth, P.A. Lindg̊ard, Phys. Rev.
B 48, 7259 (1993)

4. T.M. Nguyen, M.G. Cottam, H.Y. Liu, Z.K. Wang, S.C.
Ng, M.H. Kuok, D.J. Lockwood, K. Nielsch, U.G. Sele,
Phys. Rev. B 73, 140402(R) (2006)

5. M. Grimsditch, G.K. Leaf, H.G. Kaper, D.A. Karpeev,
R.E. Camley, Phys. Rev. B 69, 174428 (2004)

6. M. Grimsditch, L. Giovannini, F. Montoncello, F. Nizzoli,
G.K. Leaf, H.G. Kaper, Phys. Rev. B 70, 054409 (2004)

7. Z.K. Wang, H.S. Lim, H.Y. Liu, S.C. Ng, M.H. Kuok,
L.L. Tay, D.J. Lockwood, M.G. Cottam, K.L. Hobbs, P.R.
Larson et al., Phys. Rev. Lett. 94, 137208 (2005)

8. S. Mørup, H. Topsøe, Appl. Phys. 11, 63 (1976)
9. S. Mørup, J. Magn. Magn. Mater. 37, 39 (1983)

10. S. Mørup, B.R. Hansen, Phys. Rev. B 72, 024418 (2005)
11. L.R. Maxwell, T.R. McGuire, Rev. Mod. Phys. 25, 279

(1953)
12. V.V. Pishko, S.L. Gnatcheko, V.V. Tsapenko, R.H.

Kodama, S. Makhlouf, J. Appl. Phys. 93, 7382 (2003)
13. M.S. Seehra, P. Dutta, H. Shim, A. Manivannan, Solid

State Commun. 129, 721 (2004)
14. M.F. Hansen, F. Bødker, S. Mørup, K. Lefmann, K.N.

Clausen, P.A. Lindg̊ard, Phys. Rev. Lett. 79, 4910 (1997)
15. S.N. Klausen, K. Lefmann, P.A. Lindg̊ard, L. Theil Kuhn,

C.R.H. Bahl, C. Frandsen, S. Mørup, B. Roessli,
N. Cavadini, C. Niedermayer, Phys. Rev. B 70, 214411
(2004)

16. S. Mørup, D.E. Madsen, C. Frandsen, C.R.H. Bahl, M.F.
Hansen, J. Phys.: Condens. Matter 19, 213202 (2007)

17. L. Theil Kuhn, K. Lefmann, C.R.H. Bahl, S.N. Klausen,
P.A. Lindg̊ard, C. Frandsen, D.E. Madsen, S. Mørup,
Phys. Rev. B 74, 184406 (2006)

18. C.R.H. Bahl, K. Lefmann, L. Theil Kuhn, N.B.
Christensen, H. Vázquez, S. Mørup, J. Phys.: Condens.
Matter. 18, 11203 (2006)
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